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Abstract

Meiotic drivers distort transmission to the next generation in their favor, with detrimental effects

on the fitness of their homologues and the rest of the genome. Male carriers of meiotic drivers

commonly inflict costs on their mates through genetic incompatibility, reduced fecundity, or biased

brood sex ratios. Given these costs, evidence for female discrimination against male carriers is sur-

prisingly rare. One of few examples is the t haplotype in house mice, a meiotic driver that shows

strong transmission distortion in males and is typically homozygote lethal. As a consequence, mat-

ing between 2 t heterozygous (þ/t) mice leads to high embryo mortality. Previous experiments

showing thatþ/t females avoid this incompatibility cost by preferringþ/þversusþ/t males have

inferred preference based on olfactory cues or brief social interactions. Evidence from mating con-

texts in laboratory settings and semi-natural populations has been inconclusive. Here, we investi-

gated female choice from a large number of no-choice mating trials. We found no evidence for

discrimination againstþ/t males based on mating, remating, and copulatory behavior. Further, we

found no evidence for avoidance of incompatibility through selective interactions between game-

tes. The likelihood of mating showed significant effects of female weight and genotype, suggesting

that our test paradigm enabled females to exhibit mate choice. We discuss the strengths and limita-

tions of our approach. By explicitly considering selection at both the individual and gene level, we

argue why precopulatory female discrimination byþ/t females may be less evolutionarily stable

than discrimination by all females based on postcopulatory mechanisms.
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Female mate choice for genetic benefits is a much-debated topic in

evolutionary biology (Kokko et al. 2006; Kuijper et al. 2012;

Hughes 2015). Several hypotheses regarding the evolution of female

preferences for heritable male traits have been formulated, some of

which posit that choosy females benefit through producing attract-

ive offspring (Fisherian runaway selection), whereas others propose

that offspring inherit “good genes” from males that display pre-

ferred secondary sexual traits (Andersson and Simmons 2006). A

further potential genetic (indirect) benefit of female preference is

producing offspring with compatible alleles, where the genetic qual-

ity of the offspring depends on the genetic interactions of the

parents’ alleles (Kempenaers 2007; Puurtinen et al. 2009). The dif-

ferent kinds of genetic benefits and direct non-genetic benefits are

not mutually exclusive (Kokko et al. 2006), and the distinction be-

tween “good alleles” and “compatible alleles” (Kempenaers 2007)

might not even be useful, because the frequency of an allele in a

population partly determines its additive and non-additive compo-

nents of genetic variance (Puurtinen et al. 2009). One of the chal-

lenges with regards to explaining the evolution of mate choice for

genetic benefits is that directional preference should—but empiric-

ally does not—lead to the depletion of the genetic variation in the

target of the preference (the “lek paradox”; Kirkpatrick and Ryan
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1991). Several solutions to the lek paradox have been proposed,

some of which rely on continuous generation of variation in genetic

quality through deleterious mutations (Iwasa et al. 1991).

Preference for “good” genes may thus be seen as discrimination

against “bad” genes (Hughes 2015), where females avoid mating

with males carrying deleterious alleles.

Genomic conflict is a potentially ubiquitous source of variation

in genetic quality and compatibility (Burt and Trivers 2006). Selfish

genetic elements undermine otherwise fair inheritance and promote

their own success at the cost of the rest of the genome (Burt and

Trivers 2006). Segregation distorters are selfish genetic elements

that manipulate meiosis or postmeiotic stages of gamete production,

thus exhibiting “meiotic drive”(Lindholm et al. 2016). Meiotic drive

frequently targets male gametogenesis (Taylor and Ingvarsson

2003), presumably because male gametes are produced in excess

and fast cell proliferation in spermatogenesis is under less control

than oogenesis (Price and Wedell 2008). Mating with male carriers

of such meiotic drivers can incur a variety of costs to females, either

through reduced fertility owing to the elimination of a large propor-

tion of the gametes (Price and Wedell 2008), to the production of

sex-biased broods in the context of sex ratio distorters (Jaenike

2001), or due to genetic incompatibility between deleterious muta-

tions located on the driver (Zeh and Zeh 1996). Female preference

for males that do not carry meiotic drivers can be expected to evolve

in order to avoid these fitness costs (Lande and Wilkinson 1999;

Manser 2015). There are well-known empirical examples for female

discrimination against drive-bearing males (Lenington et al. 1992;

Wilkinson et al. 1998), but the evidence available so far indicates

that precopulatory female discrimination is not a common strategy

for avoiding the costs imposed by selfish genetic elements (Jaenike

2001; Price and Wedell 2008; Price et al. 2012; Wedell 2013). One

issue is that any male trait used by females to detect drive males

needs to be tightly genetically linked to the drive locus to prevent re-

combination from breaking up the association between trait and

driver (Lande and Wilkinson 1999; Manser 2015). In one of the

prominent examples of female preference for driver-free males, sex

ratio drive in stalk-eyed flies (Wilkinson et al. 1998), male eye span

has been identified as the target of female preference (Wilkinson

et al. 1998; Cotton et al. 2014), and is influenced by a locus in the

genomic region of the driver where recombination is strongly

reduced (Johns et al. 2005). Thus, eye span represents an honest trait

that females can use to avoid fertilization by males with a costly sex

ratio distorter. Here, we focus on the second prominent example for

precopulatory discrimination against driver males, the t haplotype

in house mice, where the evidence is less conclusive than in the

stalk-eyed flies example.

The t haplotype is an autosomal meiotic drive element that

shows strong drive in males and normal transmission in females

(Ardlie and Silver 1996; Lindholm et al. 2013). Drive occurs

through an elaborate “poison–antidote” mechanism that impairs

the motility of sperm not carrying the t haplotype within aþ/t

male’s ejaculate and thus gives t-bearing sperm an advantage in

intra-ejaculate sperm competition (reviewed in Herrmann and Bauer

2012). Several major chromosome inversions provide tight genetic

linkage of the t haplotype and strongly reduce recombination

(Figueroa et al. 1985). Probably as a direct consequence of a build-

up of mutations, many t haplotypes carry homozygote embryonic le-

thal alleles (Bennett 1975). The combination of strong male drive

and homozygote embryo lethality makes 2þ/t individuals genetic-

ally incompatible partners: litter size ofþ/t females mated toþ/t

males is much smaller than in other crosses (Lindholm et al. 2013),

givingþ/t females a strong evolutionary incentive to avoid fertiliza-

tion byþ/t males. Females heterozygous for the t haplotype (þ/t fe-

males) have been repeatedly shown to prefer the odor of wild-type

males (þ/þ) overþ/t males (Lenington 1991), though all studies

were performed in a single laboratory that used wild-derived mice

from a mixture of populations, some of which harbored t haplotype

variants (different t haplotypes fall into 16 different complementa-

tion groups; Klein et al. 1984). The mechanistic basis for olfactory

discrimination has not been identified, although the responsible

locus was mapped to the t haplotype (Lenington et al. 1988). The

major histocompatibility complex (MHC) was thought to offer a

promising candidate for olfactory discrimination because several

loci are located on the t haplotype (individual t haplotypes thus

carry unique MHC alleles; Figueroa et al. 1985; Lindholm et al.

2013). However, it was empirically excluded as the target of female

discrimination through the use of recombinant females that showed

olfactory discrimination despite carrying a t haplotype with a wild-

type MHC haplotype (Lenington et al. 1988). Thus, it remains un-

known what exact signal females use to smell the difference be-

tweenþ/t andþ/þmales.

Importantly, female preference for wild-type males has never

been shown in an actual mating context (Lenington 1991). There is

some evidence that female social preference has adaptive functions

in house mice (Drickamer et al. 2000; Raveh et al. 2014), but 3 re-

cent studies showed that the correlation between social preference

and paternity share is at best moderate (Thonhauser et al. 2013;

Manser et al. 2015; Zala et al. 2015). Instead, females appear to ac-

tively mate with multiple males when given the choice (Rolland

et al. 2003; Thonhauser et al. 2013; Manser et al. 2015; Zala et al.

2015). Multiple mating (polyandry) offers a more parsimonious

mechanism than precopulatory mate choice because it does not re-

quire the presence of a male phenotype that is tightly linked to the

drive locus. Instead, postcopulatory processes such as sperm compe-

tition (Parker 1970) or cryptic female choice (Eberhard 1996) could

simply exploit the fact that male meiotic drive is by default associ-

ated with ejaculate features (Haig and Bergstrom 1995). Strong evi-

dence supports the notion that male meiotic drive reduces the sperm

competitiveness of its carriers (Price and Wedell 2008; Price et al.

2008a; Wedell 2013; Sutter and Lindholm 2015), making polyandry

a potentially powerful mechanism to avoid fertilization by male car-

riers of drive elements (Haig and Bergstrom 1995; Zeh and Zeh

1996).

Ifþ/t males are indeed discriminated against byþ/t females

through pre- or postcopulatory processes, fertilization by aþ/t male

may be costly forþ/þ females, too, because of investment into sons

that are unattractive at least to part of the population or disadvan-

taged in postcopulatory competition. A meta-analysis suggested that

benefits through sexy sons are more important for driving female

preference than benefits through good genes effects (Prokop et al.

2012). Whenever discrimination byþ/t females is not fully effi-

cient,þ/þ females mating withþ/t males may also have fewer

grandchildren due to genetic incompatibility caused by imprecision

of their daughter’s mating decision. Whereas both good genes and

sexy sons benefits may be important, the fitness benefits for the dif-

ferent female genotypes relative to the costs of pre- and postcopula-

tory mate choice are currently unknown but are crucial for assessing

the net fitness of different behavioral strategies (Manser et al. 2015).

Evidence for olfactory preference byþ/þ females was found in some

(Lenington 1983; Lenington and Egid 1985) but not in other studies

(Coopersmith and Lenington 1992; Williams and Lenington 1993).

Experiments involving actual mating contexts in conditions ranging
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from laboratory settings to natural conditions have found some indi-

cations for differences betweenþ/t andþ/þ females (Carroll et al.

2004; Lindholm et al. 2013; Manser et al. 2015), but may have been

subject to biases through prenatal or early postnatal mortality.

Moreover, these studies and an earlier one (Levine et al. 1980)

showed paternity disadvantages forþ/t males, but were unable to

distinguish between pre- and postcopulatory processes. In natural

populations, male dominance adds a further confounding factor that

influences both male–male competition and female preference

(Coopersmith and Lenington 1992), and the evidence for an effect

of the t haplotype on male dominance is mixed (Franks and

Lenington 1986; Lenington et al. 1996; Carroll et al. 2004).

While thus far there is evidence for olfactory discrimination

againstþ/t males, it remains unclear how olfactory preference trans-

lates into precopulatory mate choice, and whetherþ/t females con-

sistently differ fromþ/þ females. Here, we test female mate choice

with respect to the t haplotype in an actual mating context. First, we

test for female choice ofþ/t andþ/þmales in a no-choice test para-

digm where females are presented with only one male at a time, and

ask whether female genotype at the t locus influences the outcome.

We use the occurrence of mating and subtler measures of copulatory

behavior to infer female preferences. In a second stage, we ask

whether a female’s remating is influenced by the genotype of her

first mate. Females may be able to recognize a male’s genotype by

his ejaculate features (Angelard et al. 2008) and may thus show dif-

ferential remating behavior dependent on the genetic quality of their

first mate (the “trade-up” hypothesis; Pitcher et al. 2003). Finally,

analyzing the distribution of embryo genotypes enables us to address

the possibility that compatibility choice occurs between gametes

(i.e., that t-bearing ova choose wild-type sperm).

Material and Methods

For this study, we investigated previously unreported aspects of 3 la-

boratory experiments that all followed a similar mating protocol.

The first 2 experiments involved sperm competition trials to assess

the effect of the t haplotype (Sutter and Lindholm 2015) and of the

copulatory plug (Sutter and Lindholm 2016) on the outcome of

postcopulatory competition between 2 males. In the third experi-

ment, monogamous matings were conducted to validate copulatory

plug size variation (Sutter and Lindholm 2016). For this study, we

expanded our analyses to address questions related to precopulatory

female choice and cryptic female choice.

Experimental animals
We used 259 female (mean age 6 standard deviation (SD):

103 6 28 days) and 162 male (79 6 27 days) wild house mice Mus

musculus domesticus. Subjects were sexually mature but initially

sexually naı̈ve laboratory-born F1–F3 descendants from a free-living

population in Switzerland (König and Lindholm 2012), from which

we introduce individuals into our breeding colony every generation.

Mice were kept under standard laboratory conditions at a tempera-

ture of 22–24 �C under a 14:10 light:dark regime. The breeding col-

ony was kept under a normal light cycle (lights on at 05:30 CET),

with food (laboratory animal diet for mice and rats, no. 3430,

Kliba) and water provided ad libitum. Paper towels and cardboard

served as enrichment and nest building material. Experimental sub-

jects were descendants of 62 breeding pairs, of which 31 consisted

of at least one individual (typically the male) that had been caught

in the free living population from which all breeding individuals des-

cended from (König and Lindholm 2012). Breeding pairs consisted

of monogamous pairs of non-siblingþ/þmales and eitherþ/þorþ/t

females, the latter producing on average 50%þ/t offspring. At the

age of 23–28 days, we weaned offspring and kept them in same sex

sibling groups in Makrolon Type III cages (23.5�39�15 cm). We

separated male mice at latest when aggression started between

brothers and kept them individually in Makrolon Type II cages

(18�24�14 cm). Mating trials were conducted under a reversed

14:10 light:dark regime (lights on at 17:30 CET) in a room sepa-

rated from the breeding colony. Animals were moved at least 2

weeks prior to being used in the experiment. We usedþ/t andþ/

þmales and females and diagnosed their t haplotype status before

they entered the experiment. An ear punch tissue sample taken at

weaning was used for genotyping and individual identification. We

extracted DNA by salt-chloroform extraction (Müllenbach et al.

1989) and diagnosed t haplotype status as described below (section

“Postcopulatory aspects”). The experimenter was blind with respect

to genotype during all procedures, including mating trials, video ob-

servations, dissections and genotyping. All procedures received eth-

ics approval by the Veterinary Office Kanton Zurich, Switzerland

(license no. 110/2013) and were conducted in accordance with

Swiss law.

Mating trials
The protocol for our mating trials has been described previously

(Sutter and Lindholm 2015, 2016), and was similar in all 3 pooled

experiments. We chose sexually receptive females in pro-oestrus or

oestrus based on visual appearance of the vagina and/or on a quick

microscopic inspection of vaginal smears that were taken with plas-

tic inoculation loops (modified after Byers et al. 2012). Oestrus stage

may affect the likelihood of mating and male copulatory behavior

(Preston and Stockley 2006) and was thus included our analyses we

included a categorical account of oestrus stage (“early,” “medium,”

or “late” oestrus; Byers et al. 2012). Males and females were

weighed to the nearest 0.1g immediately before the start of the trials,

which was 1.8 h 6 0.8 (mean 6 SD) after the beginning of the 10-h

dark phase of the reversed light cycle (lights off at 07:30 CET).

Females were paired with a male in his cage under a red light spot

after having removed nesting material to facilitate video observation

for the quantification of copulatory behavior. Females were checked

every 1–1.5 h for the presence of a copulatory plug, indicating ejacu-

lation by the male (McGill 1962). We released the pair into a han-

dling bin and briefly restrained the female to check her vagina for a

plug under dim white light, before reintroducing the pair into the

cage. Thus, mice were out of their cage for approximately 1 min

during a check. For the trials of one of the experiments (N¼45), fe-

males were sacrificed after their first mating as part of validation of

copulatory plug removal methodology (Sutter and Lindholm 2016).

For the remaining mated females (N¼170), the plug was then either

removed or left intact (Sutter and Lindholm 2015 2016), after

which the female was paired with the second male and checked

every 30–60 min until either a second copulatory plug was observed

or until the beginning of the next dark phase. After the second mat-

ing, the plug was again either removed or left intact. Thus, females

either had both or neither of their mates’ plugs removed. Mated fe-

males were kept in isolation with nesting material and ad libitum

food and water. Trials in which no plug by the first male was de-

tected were stopped at the end of the dark phase and females were

re-tested on a later occasion. Males were sexually rested for a min-

imum of 3 days after a trial with mating to allow sperm and seminal

fluid replenishment (Sutter et al. 2016). Whenever possible, we used

full brothers from the same litter (65/70 male pairs) for sperm
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competition trials to minimize the influence of genetic background

and potential maternal effects on mating behavior and sperm

competitiveness.

Copulatory behavior
Copulatory behavior in house mice is characterized by initial

mounts, a variable number of mounts with intromission (during

which the male inserts his penis and performs pelvic thrusts), and

ejaculation including the deposition of the copulatory plug (McGill

1962). One copulatory series includes all mounts and intromissions

and ends with ejaculation. Here, we recorded (1) the latency from

introduction of the pair into the cage to the first mount (mount la-

tency), (2) the latency from the first copulatory mount to ejaculation

(ejaculation latency), and (3) the in copula duration at ejaculation as

potential indicators of a female’s willingness to mate. We also used

video recordings to confirm ejaculation by the second male.

Postcopulatory aspects
We sacrificed females 9 days (6 1 day) post coitum using gradual

CO2 filling in their home cage and dissected females to retrieve im-

planted embryos. By doing so we avoided potential biases in the dis-

tribution of t genotypes due to early postimplantation embryonic

mortality associated with the t haplotype (t/t embryos are resorbed

in utero; Lindholm et al. 2013; Sutter and Lindholm 2015). Embryo

viability and paternity results are described elsewhere (Sutter and

Lindholm 2015, 2016). Here, we further genotyped the Hba-ps4

locus that is located in the genomic region of the t haplotype

(Schimenti and Hammer 1990; Lindholm et al. 2013) to obtain data

on embryo genotype frequencies (þ/þ,þ/t and t/t) for t haplotype

drive estimates and questions related to cryptic female choice with

respect to gamete genotype.

Statistical analyses
An overview of the sample sizes available for the different analyses

is given in Table 1. Data will be made available on Dryad on accept-

ance of the manuscript.

Using the functions lmer and glmer in lme4 (Bates et al. 2014) in

R version 3.1.3 (R Core Team 2015), we analyzed data on mating

and remating, copulatory behavior, and offspring genotypes with

generalized linear mixed models (GLMMs) and linear mixed models

(LMMs), depending on the response variable. We compared full mod-

els to null models using likelihood ratio tests (LRTs) to test the global

null hypothesis that none of the predictors has a significant effect on

the response variable, and extracted effect sizes from full models to

avoid biasing effect sizes through removal of non-significant terms

(Forstmeier and Schielzeth 2011). Continuous input variables were

standardized to a mean of 0 and a SD of 1 to improve interpretability

(Schielzeth 2010). Because many females were re-tested if they did not

mate and because all males were used in multiple trials, we included

the identity of the individuals as random effects in all models to ac-

count for multiple testing and avoid pseudoreplication. To account

for the family structure inherent in our breeding design, we also

included female and male parental origin as random effects. We ob-

tained approximate 95% confidence intervals (c.i.) for fixed effects by

multiplying Student’s t values for our sample sizes by the standard

errors of the predicted values (Crawley 2007).

Controlling for relatedness

We generally controlled for relatedness between females and males

by mating females to 2 males that were full brothers but not closely

related to the female. However, in 5/488, trials females were acci-

dentally paired with a full sibling from a different litter. Moreover,

due to our within-population breeding design with a limited number

of breeding pairs with overlapping generations, mating trials would

by chance be staged between second-degree relatives (such as cous-

ins). To include relatedness in our analyses, we included information

from our breeding pedigree, where individuals not sharing any rela-

tives in the 2 previous generations were assumed to be unrelated.

Relatedness estimates thus ranged between 0 (no shared grandpar-

ents) and 0.5 (full siblings).

Mating trials

First, we analyzed mating success (whether or not a plug was de-

tected in a mating trial) with binomial GLMMs. The full model

included the following fixed effects: male and female genotype at

the t locus and their interaction, male and female body weight and

their interaction, female age, oestrus stage (categorical variable with

3 levels), and the pedigree-based relatedness between the 2 individ-

uals (see above).

Second, we asked whether the genotype of a female’s first mate

influenced her remating likelihood. We analyzed female remating

similarly to mating success, here based on video observations. We

included the following variables as fixed effects in a binomial

GLMM: the genotypes of a female and her first mate as well as their

Table 1. Overview of sample sizes available for the different analyses (mating, copulatory behavior, remating, and embryo genotype

analyses)

þ/þ Females þ/t Females Total

First mate þ/þ þ/t þ/þ þ/t

Paired with male 151 145 107 85 488

Mated 71 69 40 35 215

Copulatory behavior 46 35 24 19 124

Second mate þ/þ þ/t þ/þ þ/t þ/þ þ/t þ/þ þ/t

Paired with male 27 30 39 16 14 18 17 9 170

Remated 19 21 29 14 12 12 13 7 127

Sire genotype þ/þ þ/t þ/þ þ/t

Sire mating order 1st 2nd 1st 2nd 1st 2nd 1st 2nd

Embryo genotypes 263 201 87 84 149 95 38 39 956
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interaction, female and male weight and their interaction, and re-

latedness between the female and the male. Because in one of the ex-

periments, some of the first males’ copulatory plugs had been

removed (Sutter and Lindholm 2016), we included plug removal as

a categorical fixed effect with 2 levels.

Copulatory behavior

We analyzed 3 components of copulatory behavior (mount latency,

ejaculation latency, and in copula duration at ejaculation) individu-

ally using LMMs. Full models contained female and male genotype

and their interaction, female and male body weight and their inter-

action, oestrus stage and relatedness as fixed effects.

Postcopulatory aspects

Paternity outcomes have been published elsewhere and showed no

evidence for an influence of female genotype on the sperm competi-

tion disadvantage ofþ/t males (Sutter and Lindholm 2015). Here,

we investigated potential within-ejaculate discrimination at the

gamete level, that is, whether penetration of t-bearing ova was non-

random with respect to sperm genotype. The proportions of differ-

ent genotypes of a female’s embryos were analyzed using binomial

GLMMs. In these models, we only included female and male iden-

tity as random effects, because family-associated variances showed

to be negligible. Significance of genotypic frequency estimates was

assessed by comparing approximate 95% c.i. to null hypotheses

based on previous estimates of transmission in males and females

for this population (Lindholm et al. 2013) and on random gamete

interactions. Mating order of the sire was included as a covariate to

test for a change in the strength of drive with mating order (i.e., tim-

ing of ejaculation relative to ovulation) as suggested from work on

delayed matings (Braden 1958) and postpartum oestrus matings

(Lenington and Heisler 1991).

Results

Mating trials
The 3 experiments were conducted over the course of almost 2 years

from January 2013 to December 2014, but initial inspection showed

that mating success was not significantly different between the 3 ex-

periments and they were subsequently pooled. In 488 mating trials,

215 females mated as indicated by the deposition of a copulatory

plug. Individual females that mated did so after 1.8 6 1.3 trials

(mean 6 SD; range 1–8). Females that never mated before the end of

the experiments were tested 2.1 6 1.4 times (range 1–9). In success-

ful trials that led to ejaculation by the male, pairs were separated

after 5.7 6 1.6 h (range 1.5–9.5 h). Pairs that had not mated were

separated after 8.5 6 0.7 h (range 7–11 h).

We analyzed mating as a binary outcome in a full model includ-

ing 389 trials with all information available. Due to our full model

approach, trials with missing information regarding any of the pre-

dictor variables—most commonly oestrus stage, male body weight,

and relatedness—had to be excluded. Inspection of the full model

showed significant effects of female genotype and female weight

(Table 2 and Figure 1A). Thus,þ/t females had a lower likelihood of

mating (GLMM: 389 trials, 226 females, 117 males; b [95%

c.i.]¼0.55 [1.05, 0.05], z¼2.17, P¼0.030), and heavier females

were more likely to mate (0.45 [0.19, 0.72], z¼3.36, P<0.001).

There was neither a significant main effect of male genotype

(P¼0.550), nor was the interaction with female genotype signifi-

cant (P¼0.645; Figure 1B). These results were robust to a more

conservative controlling for multiple testing of individual females, as

a model including only each female’s first mating trial (GLMM on

207 trials including 104 males) showed very similar results. Thus,

the positive effect of female weight on mating likelihood was not

driven simply by re-testing females that had not mated at a younger

age and had gained weight as time progressed.

Whether or not a mated female remated with her second mate

was not significantly affected by any of the variables investigated,

including female and male genotype and its interaction. Thus, the

null hypothesis for the full model could not be rejected (GLMM:

145 trials, 84 males; P¼0.194; Table 3).

Copulatory behavior
We analyzed mount latency, ejaculation latency and in copula dur-

ation at ejaculation to look for more cryptic signs of female mate

choice. The null hypotheses for the full models on each of the 3

Table 2. Model summary from a full model on mating success

Model Response

variable

Random effects Fixed effects Mean (SD) Fixed effect

centered/

standardized?

Estimate

[approx. 95% c.i.]

z value/

F value

P

GLMM Mating

success

1jFamily/Male ID Intercept (genotypes centered) – – 0.02 [0.47, 0.51] 0.07 0.941

1jFamily/Female ID Female t haplotype – y/n 0.55 [1.05, 0.05] 2.17 0.030

Male t haplotype – y/n 0.15 [0.63, 0.34] 0.59 0.558

Female weight [g] 20.7 (1.7) y/y 0.45 [0.19, 0.72] 3.36 < 0.001

Male weight [g] 25.2 (2.0) y/y 0.10 [0.14, 0.35] 0.83 0.404

Female age [d] 108 (29) y/y 0.09 [0.18, 0.36] 0.65 0.515

Relatedness 0.02 (0.08) n/n 0.09 [3.06, 2.88] 0.06 0.954

Early oestrus – n/n 0.31 [0.88, 0.26] 1.07 0.285

Late oestrus – n/n 0.03 [0.57, 0.64] 0.11 0.913

Female � male t haplotype – – 0.22 [0.72, 1.17] 0.46 0.645

Female � male weight – – 0.05 [0.20, 0.30] 0.41 0.683

GLMM¼ generalized linear mixed model. The intercept was centered for female and for male genotype by assigning values of 0.5 andþ0.5 toþ/þ andþ/t indi-

viduals, respectively. Thus, the intercept corresponds to an average betweenþ/þ andþ/t individuals for unrelated individuals with average body weights, with fe-

males of average age at an intermediate oestrus stage. t haplotype shows the change forþ/t relative toþ/þ individuals. Centered and standardized fixed effects

have a mean of 0 and a standard deviation of 1 (Schielzeth 2010). Approximate 95% c.i. were obtained by multiplying Student’s t values for our sample sizes by

standard errors of the predicted values (Crawley 2007). 95% c.i. not overlapping 0 and P values< 0.05 are highlighted in bold.
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(a) (b)

Figure 1. (a) Mating likelihood as a function of female weight and genotype. Mating likelihood of females increased with their weight and was higher forþ/þ than

forþ/t females (Table 2). Ticks correspond to individual mating trials (only every female’s first trial is shown here, N¼247), lines and shaded areas show predic-

tions and approximate 95% c.i. from a full GLMM on 389 trials (Table 2).þ/t females are shown in red,þ/þ females in gray. (b) No evidence for discrimination

againstþ/t males byþ/þandþ/t females. Circles and error bars depict mean and approximate 95% c.i. from full GLMMs on mating likelihood for first matings

(solid circles) and rematings (open circles), dependent on female genotype and the genotype of first mates. Raw data are shown as background gray circles, with

surface area proportional to sample size. Neither mating nor remating likelihood was significantly affected by male genotype or its interaction with female geno-

type (see main text and Tables 2 and 3).

Table 3. Model summaries on full model tests for remating and copulatory behavior

Fixed effects LRT

Model Response variable Random effects Full model Null model v2 df P

GLMM Remating 1jFamily/Male ID Intercept Intercept 11.15 8 0.194

1j Female family Female t haplotype

Male t haplotype

Female weight [g]

Male weight [g]

Relatedness

Plug removal

Female � male t haplotype

Female � male weight

LMM Mount latency 1jFamily/Male ID Intercept (genotypes centered) Intercept 2.42 9 0.983

1jFemale family Female t haplotype

Male t haplotype

LMM Sqrt(Ejaculation latency) 1jFamily/Male ID Female weight [g] Intercept 6.24 9 0.716

1jFemale family Male weight [g]

Relatedness

LMM In copula at ejaculation 1jFamily/Male ID Early oestrus Intercept 3.78 9 0.925

Late oestrus

1jFemale family Female � male t haplotype

Female � male weight

GLMM¼ generalized linear mixed model, LMM¼ linear mixed model. Fixed effects were centered and standardized as indicated in Table 2 and were the same

for all 3 models of copulatory behavior. Shown are the results from LRTs on the full versus the null model (including only the intercept and random effects).
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aspects of copulatory behavior could not be rejected (LMMs: 108

trials, 61 males; P¼0.983, P¼0.716 and P¼0.925). Thus, copula-

tory behavior was not significantly influenced by any of the vari-

ables investigated (Figure 2 and Table 3).

Postcopulatory effects
Figure 3 depicts the predicted and empirical genotypic frequencies

for the different crosses. Our estimate for male drive from matings

betweenþ/t males andþ/þ females was 0.94 [0.87, 0.97], not sig-

nificantly different from a previous estimate on this population (0.9;

Lindholm et al. 2013). There was no evidence for an influence of

mating order on male drive (GLMM: 171 embryos, 31 females, 32

males; z¼0.998, P¼0.318), meaning that male drive did not differ

between males that were first versus second-to-mate (0.90 vs. 0.97).

Transmission of the t haplotype fromþ/t females did not deviate

from Mendelian segregation (0.53 [0.47, 0.60]). Based on 0.9 drive

in males and 0.5 transmission in females, the expected distribution

of embryo genotypes fromþ/t xþ/t matings was 0.45 t/t, 0.5þ/t

and 0.05þ/þ. Our empirical estimates matched this prediction well:

0.44 t/t [0.29, 0.61], 0.56þ/t [0.43, 0.67] and 0þ/þ. Again, order

had no significant effect on this distribution (GLMM: 77 embryos,

15 females, 11 males; z¼0.202, P¼0.840). Overall, we found no

evidence for a reduced transmission of the t haplotype in matings be-

tween genetically incompatible partners, and thus no influence of fe-

male genotype at the t locus on drive (cf. Lindholm et al. 2013).

Discussion

In a large number of controlled mating trials, we found no evidence

for female discrimination against male carriers of the t haplotype.

This was true for precopulatory mate choice, copulatory behavior

and remating. Moreover, we found no evidence for cryptic reduction

of drive based on genotypes of embryos retrieved during gestation.

These results highlight that precopulatory discrimination against t

haplotype bearing males may not be a common female strategy to

avoid fitness costs associated with this meiotic driver. Female mul-

tiple mating offers a more parsimonious and potentially more

powerful mechanism.

Precopulatory female preference?
We found no evidence for precopulatory discrimination againstþ/t

males, neither by genetically incompatibleþ/t females nor byþ/þ fe-

males. Our findings contrast with previous studies that have re-

ported consistent preferences byþ/t females for the airborne scent

ofþ/þmales over that ofþ/t males (Lenington 1991). Although

urine fromþ/t males has been suggested to differ in volatile chemical

profile from wild-type males (Jemiolo et al. 1991), female house

mice appear to require information from non-volatile components

of urine to develop preferences for individual males (Ramm et al.

2008; Roberts et al. 2010). Furthermore, some recent studies have

suggested that the correlation between social preference and sexual

preference (as measured by parentage of offspring) may be weak in

wild-derived house mice (Thonhauser et al. 2013; Manser et al.

2015; Zala et al. 2015). Arena settings have also been used to inves-

tigate discrimination againstþ/t males, with mixed results

(Lenington 1983; Franks and Lenington 1986). The only study so

far that allowed females to choose betweenþ/t andþ/þmales while

preventing male–male interactions found no support for precopula-

tory choice (Manser et al. 2015). The paternity disadvantage ofþ/t

males was consistent with purely postcopulatory processes, but the

Figure 2. Three aspects of copulatory behavior of first-to-mate males as a

function of female and male genotype. Mount latency [minutes; squares],

ejaculation latency [minutes; circles] and in copula duration at ejaculation [se-

conds; diamonds] are shown on a log10-transformed scale for all 4 possible

female x male genotype combinations. Copulatory behavior was not signifi-

cantly affected by any of the variables investigated (Table 3). Small symbols

represent raw data. Large symbols and error bars show median and 95%

quantiles of the raw data. Ejaculation latencies of less than 1 min were treated

as outliers and thus excluded.

Figure 3. Distribution of embryo genotypes and estimates of male and female

t transmission for different parental genotype combinations. Circles and error

bars show predicted mean and approximate 95% c.i. for embryo genotype

frequencies from GLMMs. The parental genotypes are indicated on the X-

axis, embryo genotypes are indicated by colors, and by symbols at the top of

the figure. Triangles show the predicted embryo genotype frequencies based

on transmission of the t fromþ/t males to 0.9 of their offspring and

Mendelian segregation in females as estimated for this laboratory population

elsewhere (Lindholm et al. 2013). There was no evidence for drive reduction

or for non-random fusion of sperm and ova in crossings of incompatible

genotypes (see main text).
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experimental design did not allow for a conclusive distinction be-

tween pre- and postcopulatory mechanisms and did not control for

female oestrus cycle (Manser et al. 2015). The findings reported

here are consistent with females using a strategy that relies on the

strong sperm competition disadvantage toþ/t males (Sutter and

Lindholm 2015).

Arguably, our assessment of female preference suffers from some

limitations that merit discussion. We tested female choice in a la-

boratory setting, where choice was the outcome of a mating trial

that was subject to interactions between female preference and en-

vironmental and male effects (Wagner 1998). Being introduced into

and confined in a male’s cage, females might have had little chance

to resist male coercion and exhibit choice according to their prefer-

ences. If male physical coercion influences mating, one might expect

a significant positive effect of male weight, either as a main effect or

in the interaction with female weight. However, we did not find any

influence of male weight on mating outcome (Table 2). Moreover,

the significant positive effect of female weight on mating was oppos-

ite to that predicted if light females were less able to resist male coer-

cion (Figure 1A). We can only speculate on why heavier females

were more likely to mate. First, heavier females may have a better

ability to carry a pregnancy to full term. Second, females were kept

in small same-sex groups where competition between females might

have led to dominance interactions and reproductive suppression of

subordinate females by heavier dominant females (Stockley et al.

2013). Third, if female fecundity increases with female body weight

(Singleton et al. 2001), increased mating by heavier females may

have been a product of male choice for heavier females (Dewsbury

1982). We also found a significant difference in mating likelihood

betweenþ/þ andþ/t females, which may have been caused by male

choice forþ/þoverþ/t females, or by a more reactive personality

inþ/t females (activity and exploration: Auclair et al. 2013; trapp-

ability: Lenington and Franks 1985; Drickamer and Lenington

1995; social rank and pregnancy likelihood: Franks and Lenington

1986). Additionally, our observations of copulatory behavior did

not reveal evidence for more subtle expression of female preference,

because more resistance againstþ/t males should have increased

mount latency, ejaculation latency and/or decreased in copula dur-

ation at ejaculation. Although all females were presumably in oes-

trus, the incidence of mating was moderate, but comparable to a

recent study that used females from a laboratory strain that is likely

to have experienced positive selection on female mating propensity

(Ramm and Stockley 2014). Trials in which mating did not occur

could either indicate female and/or male mate choice, or inaccuracy

in oestrus detection. Here, in the majority (82%) of the mating trials

we detected oestrus using vaginal smears, a method that is well es-

tablished for house mice (Byers et al. 2012), making it unlikely that

oestrus detection was wrong in more than half of the mating trials

and that there would have been an oestrus detection bias towards

heavier females andþ/þ females. Collectively, our findings suggest

that females actively chose to mate rather than simply being force-

fully mated, but did not discriminate againstþ/t males.

Sequential stimulus presentation in no-choice test paradigms has

been proposed as a more powerful test of female preference than sim-

ultaneous stimulus presentation (Wagner 1998), and latency to copu-

lation has been shown to be a reliable predictor of male mating

success in field crickets (Shackleton et al. 2005). Studies in inverte-

brates and vertebrates (e.g., MacLaren and Rowland 2006; Rutstein

et al. 2007) have established that no-choice tests enable females to ex-

hibit mate preference, but have also highlighted that results and effect

sizes can depend on the test paradigm used (for a meta-analysis see

Dougherty and Shuker 2015). Our no-choice test paradigm offered

the advantage of removing male–male competition, and the use of full

brothers in the vast majority of trials ensured thatþ/t males did not

systematically differ fromþ/þmales in genetic background.

However, our mating design did not allow females to simultaneously

compare males. Experiments with female brown lemmings Lemmus

trimucronatus provided some evidence for female discrimination be-

tween dominant and defeated males in a no-choice setting, as did a

simultaneous choice setting (Huck and Banks 1982). In house mice,

no-choice tests have demonstrated cryptic male choice regarding mat-

ing likelihood (Ramm and Stockley 2014), copulatory behavior

(Preston and Stockley 2006), and ejaculate allocation (Ramm and

Stockley 2007). In the only study to date that directly compared pref-

erences of female house mice between simultaneous stimulus presen-

tation and no-choice trials, the authors found that females

discriminated against hetero-subspecific males only when allowed to

compare males directly, and appeared to mate indiscriminately in no-

choice trials (Zinck and Lima 2013). However, this negative result

from no-choice trials was based on a total of 12 trials, of which only

4 resulted in ejaculation. No-choice tests are associated with smaller

effect sizes than simultaneous choice tests (Dougherty and Shuker

2015), thus Zinck and Lima’s (2013) study may have lacked the stat-

istical power to detect more subtle discrimination during no-choice

trials. Our large sample size makes it unlikely that our negative result

is due to a lack of statistical power. Nevertheless, we cannot rule out

that preference in female house is relative and may only be exhibited

when more than one potential mate is available.

Is discrimination by 1/t females plausible?
Expecting female discrimination against genetically incompatible

males in the context of the t haplotype is intuitively appealing: gen-

etic incompatibility has strong immediate fitness consequences, and

the restriction of compatibility effects to few loci should facilitate

the evolution of compatibility mate choice (Puurtinen et al. 2009).

Disassortative mating should lead to negative linkage disequilibrium

between the preference locus and the drive locus if there is no phys-

ical linkage of the preference locus to the t haplotype (Manser

2015). However, the strong linkage between the male signal and the

drive locus that is required for stability of female preference (Lande

and Wilkinson 1999; Manser 2015) is facilitated by major chromo-

somal inversions that encompass many potential candidate loci (e.g.,

MHC loci; Lindholm et al. 2013; but see Lenington et al. 1992). On

the other hand, there are also good reasons to expect that t-specific

female preference is not evolutionarily stable. First, the importance

of MHC for mate choice in mice remains controversial (Roberts and

Gosling 2003; Sherborne et al. 2007), and may be overridden by the

influence of major urinary proteins (MUPs) that are not linked to

the t haplotype (Krauter et al. 1982). Although choosing males with

MHC alleles different from self could lead to discrimination ofþ/t

males byþ/t females, it might also result in potentially maladaptive

preference forþ/t males byþ/þ females because they could on aver-

age share fewer alleles than withþ/þmales. Second, discrimination

against the t haplotype that is controlled by a locus located on the t

haplotype may not be expected to evolve or remain evolutionarily

stable. Suppression of selfish genetic elements to resolve genomic

conflict is expected to evolve in unlinked genomic regions (Burt and

Trivers 2006). In turn, selection acting on the driving element will

favor escaping suppression. Thus, selection will favor driving elem-

ents that evade detection by females (Price et al. 2012). Even in fe-

males, the situation may not be as clear as stated previously.
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Lenington and colleagues stated that “. . . given the deleterious ef-

fects of t haplotypes when homozygous, it is possible that more cop-

ies of t chromosomes will be transmitted to the next generation ifþ/

t females avoid mating withþ/t males” (Lenington et al. 1988). We

argue that, from the view of the t haplotype, even selection acting

on the t haplotype in females will not favor discrimination against a

copy of the same t haplotype unless the probability ofþ/t males

inseminatingþ/þ females was reduced by mating withþ/t females,

for example, in a strictly monogamous population. In individual lit-

ters, the absolute copy number of lethal t haplotypes that are trans-

mitted to the next generation is not decreased when females accept

incompatible mates. The offspring carrying t haplotype may even

benefit from homozygote lethality, if reduced sibling competition in-

creases their individual fitness (Charlesworth 1994).

Although we cannot rule out that avoidance ofþ/t males can

arise on the t haplotype (possibly as a by-product of pre-existing fe-

male preference loci being located in the genomic region of the t

haplotype), such a preference is unlikely to be evolutionarily stable.

Alternative ways to avoid meiotic drivers
If precopulatory discrimination against male carriers of selfish gen-

etic elements is indeed rare (Price and Wedell 2008), how else might

females avoid the associated fitness costs? Postcopulatory female

choice offers a possibility to select directly on the haploid genotype

at the gamete level (Birkhead and Pizzari 2002). Importantly, unlike

other phenotypic correlates of drive that may not reliably indicate

the presence of a driver, changes in ejaculate features such as ejacu-

late size or the number of functional sperm are a direct and inevit-

able consequence of drive in males (Haig and Bergstrom 1995). X-

linked sex ratio distortion reduces ejaculate size by killing virtually

all of the Y-bearing sperm, offering a plausible mechanism for how

females may detect driver males after insemination. Indeed,

Drosophila simulans females use fewer of their stored sperm for fer-

tilization and remate more quickly after mating with males carrying

a sex ratio distorter than after mating with wild-type males

(Angelard et al. 2008). The t haplotype does not affect ejaculate size

but instead more subtly influences sperm motility features (reviewed

in Olds-Clarke 1997), possibly making it more difficult for females

to detectþ/t males. Here, we found no evidence that remating was

affected by a female’s first mate, either because females are unable

to detect the t genotype, or because polyandry is a successful female

strategy for avoiding fertilization byþ/t males that is employed

equally byþ/t andþ/þ females (Sutter and Lindholm 2015; see

below). Nevertheless, there is some evidence from experimentally

delayed matings (Braden 1958) and a comparison between matings

during naturally cycling oestrus versus postpartum oestrus

(Lenington and Heisler 1991), indicating that the timing of mating

can affect drive, although this tends not to be the case for t haplo-

types with strong male drive (Yanagisawa et al. 1961). Two previ-

ous studies have investigated the distribution of offspring genotypes

in crosses between 2þ/t individuals and have found evidence for se-

lective penetration that resulted in a reduction of drive (Bateman

1960; Lindholm et al. 2013). Here, we genotyped embryos that we

retrieved at an early stage of gestation, thus including t/t embryos

before resorption. Although we did not directly control the timing

of mating and we did not know the timing of ovulation, first-to-

mate males on average inseminated females earlier relative to ovula-

tion than second-to-mate males. Our finding that drive was not af-

fected by mating order is in line with previous work that found no

effect of insemination relative to the timing of ovulation for t haplo-

types with strong male drive (Yanagisawa et al. 1961). Further, we

found no evidence for discrimination against t-bearing sperm by

t-bearing ova, as the genotype distribution in embryos fromþ/t fe-

males that were sired byþ/t males matched the expected distribution

based on strong male drive and Mendelian inheritance in females.

These effects suggest that if females do exhibit active

postcopulatory discrimination againstþ/t males or against t-bearing

sperm,þ/þ andþ/t females do so to the same extent (Sutter and

Lindholm 2015; but see Lindholm et al. 2013). Here, our rather

small sample size for fertilization ofþ/t females’ ova byþ/t males

prevents us from drawing firm conclusions. The small sample size

was mainly caused by theþ/t males’ strong disadvantage in sperm

competition againstþ/þmales (Sutter and Lindholm 2015).

Because of the negative effects of male meiotic drive on male fer-

tility and sperm competitiveness (Price and Wedell 2008; Price et al.

2008a; Sutter and Lindholm 2015), inciting sperm competition by

mating with multiple males (Parker 1970) may offer a simple gen-

eral mechanism for protection from the harmful effects of drive in

males (Price et al. 2008b; Manser et al. 2011; Wedell 2013; Holman

et al. 2015). Available evidence shows that female house mice are

actively polyandrous (Rolland et al. 2003; Thonhauser et al. 2013;

Manser et al. 2015) and that multiple mating is considerable in wild

populations (Dean et al. 2006). Males carrying the t haplotype are

strongly disadvantaged in sperm competition (Sutter and Lindholm

2015), particularly when first-to-mate (Sutter and Lindholm, 2016),

suggesting that polyandry is only ineffective when all of a female’s

mates are t heterozygous. Kempenaers (2007) suggested 3 questions

to address when investigating mate choice for good versus compat-

ible genes. The questions focus on (1) whether the optimal mate is

different for individual females, (2) whether there is evidence that fe-

males chose accordingly, and (3) the mechanistic basis for the

choice. In the context of the t haplotype, whereas (2) and (3) have

received some empirical support, we argue that (1) has been some-

what neglected. When considering long-term fitness consequences,

fertilization byþ/t males appears costly to bothþ/t andþ/þ females.

Polyandry provides a very effective possibility for avoiding fertiliza-

tion by costlyþ/t males, both forþ/þ andþ/t females, although the

costs of polyandry (e.g., enhanced predation risk, sexually transmit-

ted pathogens; Jennions and Petrie 2000) will influence the net fit-

ness of this strategy. Importantly, polyandry offers a parsimonious

explanation for a mechanism of discrimination that is inherently

linked to the locus that inflicts the costs. More research in wild

populations is needed to assess the importance of pre- and postcopu-

latory sexual selection on ecological dynamics of meiotic drive

(Lindholm et al. 2016).
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